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1. Introduction

The propagation of a signal in a continuous medium and the associated evolution of error is of prime
importance in many applications of applied physics. There have been many efforts in analyzing error dynam-
ics, using method attributed to von Neumann [1,2], that is readily applied for linear equations and in quasi-
linearized form for non-linear equations. The main assumption for linear problems is that the error and the
signal follow the same dynamics. While this appears intuitively correct, the main aim behind this work is to
show that this is not correct for discrete computing due to dispersion or phase error or when the numerical
method is not strictly neutrally stable.

We demonstrate the above with the help of the linear advection equation. For the analysis of space-time
discretization schemes, the linear advection equation as a model that represents many flows and wave phe-
nomena is used,
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ox
¼ 0; c > 0 ð1Þ
As a mathematical equation, Eq. (1) is non-dispersive that convects the initial solution to the right, at a
group velocity c equal to the phase speed at all times. Hence, this equation gives a basis for testing numerical
methods for solution accuracy, error propagation and most importantly the dispersion error – as in [3–7].

We represent the unknown by its Fourier transform at the jth node of a uniformly spaced discrete grid of
spacing h as, uðxj; tÞ ¼

R
Uðk; tÞeikxj dk and the exact spatial derivative at the same node is given by,

ou
ox

� �
exact
¼
R

ikUeikxj dk. While solving Eq. (1) by discrete methods, the spatial derivative u0j (denoted by a prime)
can be shown [3,5] as equivalent to
½u0j�numerical ¼
Z

ikeqUeikxj dk ð2Þ
Numerically in a finite-domain the same derivative is estimated from [5], fu0g ¼ 1
h ½C�fug. One can obtain an

appropriate matrix [C] for finite-domain non-periodic problems, with the dimension of the matrix correspond-
ing to the number of nodes, and which implies that the derivative at the jth node is evaluated as
u0j ¼ 1

h

PN
l¼1Cjlul, where ul ¼ uðxl; tÞ ¼

R
Uðk; tÞeikxl dk is the value of the function at the lth node and N is

the total number of nodes used for discretization. Using the spectral representation, we can alternatively write
the numerical derivative as,
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u0j ¼
Z

1

h

X
CjlUðk; tÞeikðxl�xjÞeikxj dk ð3Þ
Comparing Eq. (3) with (2), we note that
½ikeq�j ¼
1

h

XN

l¼1

Cjle
ikðxl�xjÞ ð4Þ
Although in physical plane computations, Cjls are real, [keq]j is in general complex, with a real part that rep-
resents the numerical phase and an imaginary part that represents the numerical dissipation added by the
choice of method determining the entries of the matrix [C].

Other important numerical properties are obtained via the spectral representation in Eq. (1), that gives

Z

oU
ot
þ c

h

X
UCjle

ikðxl�xjÞ
� �

eikxj dk ¼ 0 ð5Þ
Since the above equation is true for all wave numbers, the integrand must be zero for any k. We note that the
present analysis in the physical plane for non-periodic problems, is different from the von Neumann analysis
that is strictly valid for periodic problems only applied in the spectral plane for normal modes. The implicit
condition of Eq. (5), can be reinterpreted as,
dU
U
¼ � cdt

h

� �XN

l¼1

Cjle
ikðxl�xjÞ ð6Þ
We note that the first factor on the right-hand side is nothing but the CFL number (Nc). Since the right-hand
side of Eq. (6) is node-dependent, we can express the left hand side in terms of the nodal numerical amplifi-
cation factor (Gj),
Gj ¼ Gðx ¼ xjÞ ¼ 1� Nc

XN

l¼1

Cjle
ikðxl�xjÞ ð7Þ
for the Euler time discretization scheme. Similarly, one can obtain Gj for other time discretization schemes and
for the four-stage Runge–Kutta time integration scheme, this has been obtained in [3,8] and [9] as,
Gj ¼ 1� Aj þ
A2

j

2
�

A3
j

6
þ

A4
j

24
ð8Þ
where Aj ¼ N c
PN

l¼1Cjle
ikðxl�xjÞ. A similar relation for general class of the Runge–Kutta methods is given in [3,

page 52]. The present relation is for the fourth order Runge–Kutta scheme obtained for any nodes of a non-
periodic problem. Such full-domain analyses for some explicit and implicit numerical discretization schemes
are available in [7]. While the amplification factor can be a source of error, additional error can arise due to
dispersion and that is described next. If we represent the initial condition for Eq. (1) as given by
uðxj; t ¼ 0Þ ¼ u0
j ¼

Z
A0ðkÞeikxj dk ð9Þ
then the general solution at any arbitrary time can be obtained as,
un
j ¼

Z
A0ðkÞ½jGjj�neiðkxj�nbjÞ dk ð10Þ
where jGjj ¼ ðG2
rj þ G2

ijÞ
1=2 and tanðbjÞ ¼ �

Gij

Grj
, with Grj and Gij as the real and imaginary parts of Gj, respec-

tively. Thus, the phase of the solution is determined by nbj ¼ kcN t, where cN is the numerical phase speed.
Although the physical phase speed is a constant for all wave numbers, this analysis shows that the numerical
phase speed is wave number dependent i.e. the numerical solution is dispersive, in contrast with the non-dis-
persive nature of Eq. (1). The implications of this simple difference can be very important, as demonstrated
below.
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The general numerical solution of Eq. (1) is denoted as,
�uN ¼
Z

A0½jGj�t=Dteikðx�cN tÞ dk ð11Þ
The fact that cN 6¼ c and is a function of k has been used to explain shortcomings of some multi-time
step integration methods in [9]. Since the numerical dispersion relation is now given as xN = cNk, instead
of x = c k, the non-dimensional phase speed and group velocity at the jth discrete node can be expressed
as
cN

c

h i
j
¼

bj

xDt
ð12Þ

V gN

c

� �
j

¼ 1

hN c

dbj

dk
ð13Þ
The characteristics of some well known numerical methods have already been reported in [5–8] in terms
of the amplification rates, numerical phase speed and group velocity here in Eqs. (7), (8), (12) and (13).
The main purpose of the present work is to show the consequence of such dispersion to explain error
growth for Eq. (1) and thereby draw general observations for error dynamics of linear systems as shown
next.

If we define the computation error as eðx; tÞ ¼ uðx; tÞ � �uN , then we can obtain the governing equation for
its dynamics in the following manner. Using Eq. (11) one obtains
o�uN

ox
¼
Z

ikA0½jGj�t=Dteikðx�cN tÞdk ð14Þ
and
o�uN

ot
¼ �

Z
ikcN A0½jGj�t=Dteikðx�cN tÞ dk þ

Z
LnjGj

Dt
A0½jGj�t=Dteikðx�cN tÞ dk ð15Þ
Eq. (15) can be simplified to yield,
o�uN

ot
þ cN

o�uN

ox
¼
Z

dcN

dk

Z
ik0A0½jGj�t=Dtedk0ðx�cN tÞ dk0

� �
dk þ

Z
LnjGj

Dt
A0½jGj�t=Dteikðx�cN tÞ dk ð16Þ
Thus, the error propagation equation is given by
oe
ot
þ c

oe
ox
¼ �c 1� cN

c

h i o�uN

ox
�
Z

dcN

dk

Z
ik0A0½jGj�t=Dteik0ðx�cN tÞ dk0

� �
dk �

Z
LnjGj

Dt
A0½jGj�t=Dteikðx�cN tÞ dk

ð17Þ

This is the correct error propagation equation as opposed to that obtained using the assumption made in

von Neumann analysis, where the right-hand side is identically taken to be zero on the premise that cN @ c
i.e. there are no dispersion errors and the numerical method is perfectly neutral so that the last term on the
right-hand side of Eq. (17) is also identically zero. Some combinations of numerical parameters for solving
Eq. (1) lead to numerical instability, with an error growing faster than predicted by von Neumann error
analysis. In [9], this has been studied by solving Eq. (1) using finite element and finite difference methods.
Mismatch between error estimate by von Neumann analysis and numerical solution was attributed to dis-
persion of numerical methods and noting the error to dramatically increase when the numerical solution
displays sharp spatial variation. This can now be explained as the effect of the first term on the right-hand
side of Eq. (17). In [10–12], phase error (c � cN) was reported for monochromatic wave for periodic prob-
lems. Its effect on signal error was not reported – but it was conjectured that the phase error can be reduced
by grid refinement, while keeping Nc same. Similarly, in [4] a high order compact scheme was used for the
numerical solution of Eq. (1) and attention was focused on spatial grid requirements to obtain a level of
desired accuracy.
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Fig. 1. Contour plots showing (a) Numerical amplification factor (jGj); (b) Scaled numerical group velocity (Vg N/c) and (c) (1-cN/c) at the
interior node, using RK4 time marching and OUCS3 (g = 2) spatial discretization schemes in Eqs. (8), (12), (13).
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2. Results and discussion

First of all, we obtain the properties of the compact scheme OUCS3 [6] for a central node when the four-
stage Runge–Kutta time integration strategy is used for solving Eq. (1). In Fig. 1, jGj, VgN/c and (1 � cN/c) are
plotted as contours in the indicated ranges of kh and Nc for an interior node. It is noted from Fig. 1a for
numerical amplification contours, that the scheme is stable for Nc 6 1.301 i.e. jGj 6 1. The scheme is neutrally
stable for very small values of Nc and a limited range of kh – a property absolutely essential for direct simu-
lation. One also notes that the last term on the right-hand side of Eq. (17) vanishes for neutrally stable case. In
Fig. 1b, the scaled numerical group velocity contours display significant dispersion effects that would invali-
date long time integration results – even when neutral stability is ensured by computing with vanishingly small
time steps. In fact, above kh P 2.4 the numerical solution will travel in the wrong direction, as VgN 6 0 for
x
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Fig. 2. Error evolution shown in the top panels (for the ramp function of the inset) and their FFT (in the bottom panels) are shown at the
indicated times. Note the error components marked in the figures due to numerical instability (marked A) and phase error (marked B) – as
a consequence of the properties of the numerical method shown in Fig. 3.
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Nc @ 0. In Eq. (17), we note that the first term on the right-hand side affects the error evolution via the numer-
ical property ð1� cN

c Þ. In Fig. 1c, the contours of this quantity is shown plotted. This contribution will be sig-
nificant when the solution has large non-negligible slope. Figs. 1b and c indicate the effects of dispersion error,
that cannot be simply eliminated or reduced by grid refinement – as suggested in [4,10] and [11].

To establish the new error propagation equation, careful design of a test case is made for solving Eq. (1)
with c = 1. The computed results are for Nc = 4/3, where most of the nodes experience numerical instability
over a narrow range of kh. We consider the propagation of a ramp function (shown as an inset in Fig. 2) in the
domain given by 0 6 x 6 30, where the foot of the ramp is initially located at x = 4 and the ramp angle is given
by / = 0.45p. The spatial grid is defined by h = 0.01 and the time step is chosen from Nc = 4/3. Discrete
jumps, at the beginning and end of the ramp, give rise to the Gibbs’ phenomenon via the error evolution
as defined here. The error calculated at t = 3Dt and 6Dt (from the numerical and exact solution) is shown
in the top frames of Fig. 2. Immediately below these frames the Fourier transforms of the error are shown.
This behaviour of the error evolution is explained next with the help of the numerical properties shown in
Fig. 1.
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Fig. 3. Variation of (a) jGj and (b) (1-cN/c) with kh is shown for the indicated nodes, for Nc = 4/3. The point A in (a) indicates the where
the method is most unstable and the point B in (b) indicates where the method has maximum phase error in Eq. (17).
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For the particular CFL number (Nc = 4/3) in Fig. 3a, jGjjs are plotted for 0 6 kh 6 p for different nodes –
with the subscripts (j) indicating node number. The analysis results used here is based on Eqs. (8), (12) and (13)
and the method was originally introduced in [6,7] for discrete computing methods with any type of boundary
conditions. For the compact scheme OUCS3, it is noted [7,8] that the method displays directionality of the
derivatives. This is true of all implicit methods for derivative evaluation, with nodes near the inflow behaving
differently from the nodes near the outflow. In Fig. 3a, this is seen for the nodes at j = 2, 4, N � 3 and N � 1. It
is also seen that the maximum numerical instability suffered in the interior is for kh @ 2.4 – marked as A in the
figure. In Fig. 3b, (1 � cN/c) is plotted as a function of kh for different nodes for Nc = 4/3. For most of the
interior nodes, this quantity attains a maximum value at kh @ 1.8 – marked as B in the figure, with a discrete
jump in the value of (1 � cN/c).

In the bottom frames of Fig. 2 – for the Fourier transform – one can clearly identify two distinct peaks.
These are also marked A and B, as they correspond to the two maxima of Fig. 3a and b. The point A, at
the higher wave number produces error due to numerical instability (at kh @ 2.4) for interior nodes. The point
B contributes to the error due to phase error, arising from the first term on the right-hand side of Eq. (17) at
kh = 1.8, for which this forcing is maximum. This numerical experiment demonstrates the correctness of the
error evolution Eq. (17), as compared to what is obtained by putting all the right-hand side terms equal to zero
– an assumption made in classical von Neumann analysis. For this linear problem, according to von Neumann
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analysis the ramp solution should not have shown the peak at B, while it would have shown numerical insta-
bility at A.

To further emphasize the role of the first forcing term on the right-hand side of Eq. (17), another case is
computed with / = 0.49p, so that the term o�uN

ox is increased from a value of 0.024679 to 0.02687, within the
ramp. At t = 0, the ramp is located, as before, between x = 4 and 5. In Fig. 4, these two cases are compared
for t = 3Dt, 6Dt and 12Dt. Both the cases blow up eventually due to numerical instability – possessing identical
numerical properties for the same grid and identical time steps. However, for the case of / = 0.49p, increased
forcing due to the first term on the right-hand side of Eq. (17) causes larger error at all time instants.

3. Summary

The most significant result of the present exercise is to identify a correct error propagation equation that
also accounts for dispersion error. It is shown that when this is included, the correct error evolution equation
(17) for the scalar advection equation is not the one given by the traditional method due to von Neumann that
assumes the signal and error to satisfy the same equation. Eq. (17) is obtained here for the first time, showing
the dispersion error to change the actual constant phase speed to a variable numerical phase speed cN. This
error c(1 � cN/c), gives rise to additional forcing on the right-hand side of Eq. (17) dependent upon this error
times the spatial gradient of numerical solution. The propagation of a ramp function is studied to demonstrate
how the spatial gradient of signal affects error dynamics. In the process, we explain the genesis and evolution
of Gibbs’ phenomenon.
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